// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project // SPDX-License-Identifier: GPL-2.0-or-later #ifdef _WIN32 #include #include #include #include #include "common/dynamic_library.h" #elif defined(__linux__) || defined(__FreeBSD__) // ^^^ Windows ^^^ vvv Linux vvv #ifdef ANDROID #include #endif #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include #include #include #include #include "common/scope_exit.h" #endif // ^^^ Linux ^^^ #include #include #include "common/alignment.h" #include "common/assert.h" #include "common/free_region_manager.h" #include "common/host_memory.h" #include "common/logging/log.h" namespace Common { constexpr size_t PageAlignment = 0x1000; constexpr size_t HugePageSize = 0x200000; #ifdef _WIN32 // Manually imported for MinGW compatibility #ifndef MEM_RESERVE_PLACEHOLDER #define MEM_RESERVE_PLACEHOLDER 0x00040000 #endif #ifndef MEM_REPLACE_PLACEHOLDER #define MEM_REPLACE_PLACEHOLDER 0x00004000 #endif #ifndef MEM_COALESCE_PLACEHOLDERS #define MEM_COALESCE_PLACEHOLDERS 0x00000001 #endif #ifndef MEM_PRESERVE_PLACEHOLDER #define MEM_PRESERVE_PLACEHOLDER 0x00000002 #endif using PFN_CreateFileMapping2 = _Ret_maybenull_ HANDLE(WINAPI*)( _In_ HANDLE File, _In_opt_ SECURITY_ATTRIBUTES* SecurityAttributes, _In_ ULONG DesiredAccess, _In_ ULONG PageProtection, _In_ ULONG AllocationAttributes, _In_ ULONG64 MaximumSize, _In_opt_ PCWSTR Name, _Inout_updates_opt_(ParameterCount) MEM_EXTENDED_PARAMETER* ExtendedParameters, _In_ ULONG ParameterCount); using PFN_VirtualAlloc2 = _Ret_maybenull_ PVOID(WINAPI*)( _In_opt_ HANDLE Process, _In_opt_ PVOID BaseAddress, _In_ SIZE_T Size, _In_ ULONG AllocationType, _In_ ULONG PageProtection, _Inout_updates_opt_(ParameterCount) MEM_EXTENDED_PARAMETER* ExtendedParameters, _In_ ULONG ParameterCount); using PFN_MapViewOfFile3 = _Ret_maybenull_ PVOID(WINAPI*)( _In_ HANDLE FileMapping, _In_opt_ HANDLE Process, _In_opt_ PVOID BaseAddress, _In_ ULONG64 Offset, _In_ SIZE_T ViewSize, _In_ ULONG AllocationType, _In_ ULONG PageProtection, _Inout_updates_opt_(ParameterCount) MEM_EXTENDED_PARAMETER* ExtendedParameters, _In_ ULONG ParameterCount); using PFN_UnmapViewOfFile2 = BOOL(WINAPI*)(_In_ HANDLE Process, _In_ PVOID BaseAddress, _In_ ULONG UnmapFlags); template static void GetFuncAddress(Common::DynamicLibrary& dll, const char* name, T& pfn) { if (!dll.GetSymbol(name, &pfn)) { LOG_CRITICAL(HW_Memory, "Failed to load {}", name); throw std::bad_alloc{}; } } class HostMemory::Impl { public: explicit Impl(size_t backing_size_, size_t virtual_size_) : backing_size{backing_size_}, virtual_size{virtual_size_}, process{GetCurrentProcess()}, kernelbase_dll("Kernelbase") { if (!kernelbase_dll.IsOpen()) { LOG_CRITICAL(HW_Memory, "Failed to load Kernelbase.dll"); throw std::bad_alloc{}; } GetFuncAddress(kernelbase_dll, "CreateFileMapping2", pfn_CreateFileMapping2); GetFuncAddress(kernelbase_dll, "VirtualAlloc2", pfn_VirtualAlloc2); GetFuncAddress(kernelbase_dll, "MapViewOfFile3", pfn_MapViewOfFile3); GetFuncAddress(kernelbase_dll, "UnmapViewOfFile2", pfn_UnmapViewOfFile2); // Allocate backing file map backing_handle = pfn_CreateFileMapping2(INVALID_HANDLE_VALUE, nullptr, FILE_MAP_WRITE | FILE_MAP_READ, PAGE_READWRITE, SEC_COMMIT, backing_size, nullptr, nullptr, 0); if (!backing_handle) { LOG_CRITICAL(HW_Memory, "Failed to allocate {} MiB of backing memory", backing_size >> 20); throw std::bad_alloc{}; } // Allocate a virtual memory for the backing file map as placeholder backing_base = static_cast(pfn_VirtualAlloc2(process, nullptr, backing_size, MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, PAGE_NOACCESS, nullptr, 0)); if (!backing_base) { Release(); LOG_CRITICAL(HW_Memory, "Failed to reserve {} MiB of virtual memory", backing_size >> 20); throw std::bad_alloc{}; } // Map backing placeholder void* const ret = pfn_MapViewOfFile3(backing_handle, process, backing_base, 0, backing_size, MEM_REPLACE_PLACEHOLDER, PAGE_READWRITE, nullptr, 0); if (ret != backing_base) { Release(); LOG_CRITICAL(HW_Memory, "Failed to map {} MiB of virtual memory", backing_size >> 20); throw std::bad_alloc{}; } // Allocate virtual address placeholder virtual_base = static_cast(pfn_VirtualAlloc2(process, nullptr, virtual_size, MEM_RESERVE | MEM_RESERVE_PLACEHOLDER, PAGE_NOACCESS, nullptr, 0)); if (!virtual_base) { Release(); LOG_CRITICAL(HW_Memory, "Failed to reserve {} GiB of virtual memory", virtual_size >> 30); throw std::bad_alloc{}; } } ~Impl() { Release(); } void Map(size_t virtual_offset, size_t host_offset, size_t length, MemoryPermission perms) { std::unique_lock lock{placeholder_mutex}; if (!IsNiechePlaceholder(virtual_offset, length)) { Split(virtual_offset, length); } ASSERT(placeholders.find({virtual_offset, virtual_offset + length}) == placeholders.end()); TrackPlaceholder(virtual_offset, host_offset, length); MapView(virtual_offset, host_offset, length); } void Unmap(size_t virtual_offset, size_t length) { std::scoped_lock lock{placeholder_mutex}; // Unmap until there are no more placeholders while (UnmapOnePlaceholder(virtual_offset, length)) { } } void Protect(size_t virtual_offset, size_t length, bool read, bool write, bool execute) { DWORD new_flags{}; if (read && write) { new_flags = PAGE_READWRITE; } else if (read && !write) { new_flags = PAGE_READONLY; } else if (!read && !write) { new_flags = PAGE_NOACCESS; } else { UNIMPLEMENTED_MSG("Protection flag combination read={} write={}", read, write); } const size_t virtual_end = virtual_offset + length; std::scoped_lock lock{placeholder_mutex}; auto [it, end] = placeholders.equal_range({virtual_offset, virtual_end}); while (it != end) { const size_t offset = std::max(it->lower(), virtual_offset); const size_t protect_length = std::min(it->upper(), virtual_end) - offset; DWORD old_flags{}; if (!VirtualProtect(virtual_base + offset, protect_length, new_flags, &old_flags)) { LOG_CRITICAL(HW_Memory, "Failed to change virtual memory protect rules"); } ++it; } } void EnableDirectMappedAddress() { // TODO UNREACHABLE(); } const size_t backing_size; ///< Size of the backing memory in bytes const size_t virtual_size; ///< Size of the virtual address placeholder in bytes u8* backing_base{}; u8* virtual_base{}; private: /// Release all resources in the object void Release() { if (!placeholders.empty()) { for (const auto& placeholder : placeholders) { if (!pfn_UnmapViewOfFile2(process, virtual_base + placeholder.lower(), MEM_PRESERVE_PLACEHOLDER)) { LOG_CRITICAL(HW_Memory, "Failed to unmap virtual memory placeholder"); } } Coalesce(0, virtual_size); } if (virtual_base) { if (!VirtualFree(virtual_base, 0, MEM_RELEASE)) { LOG_CRITICAL(HW_Memory, "Failed to free virtual memory"); } } if (backing_base) { if (!pfn_UnmapViewOfFile2(process, backing_base, MEM_PRESERVE_PLACEHOLDER)) { LOG_CRITICAL(HW_Memory, "Failed to unmap backing memory placeholder"); } if (!VirtualFreeEx(process, backing_base, 0, MEM_RELEASE)) { LOG_CRITICAL(HW_Memory, "Failed to free backing memory"); } } if (!CloseHandle(backing_handle)) { LOG_CRITICAL(HW_Memory, "Failed to free backing memory file handle"); } } /// Unmap one placeholder in the given range (partial unmaps are supported) /// Return true when there are no more placeholders to unmap bool UnmapOnePlaceholder(size_t virtual_offset, size_t length) { const auto it = placeholders.find({virtual_offset, virtual_offset + length}); const auto begin = placeholders.begin(); const auto end = placeholders.end(); if (it == end) { return false; } const size_t placeholder_begin = it->lower(); const size_t placeholder_end = it->upper(); const size_t unmap_begin = std::max(virtual_offset, placeholder_begin); const size_t unmap_end = std::min(virtual_offset + length, placeholder_end); ASSERT(unmap_begin >= placeholder_begin && unmap_begin < placeholder_end); ASSERT(unmap_end <= placeholder_end && unmap_end > placeholder_begin); const auto host_pointer_it = placeholder_host_pointers.find(placeholder_begin); ASSERT(host_pointer_it != placeholder_host_pointers.end()); const size_t host_offset = host_pointer_it->second; const bool split_left = unmap_begin > placeholder_begin; const bool split_right = unmap_end < placeholder_end; if (!pfn_UnmapViewOfFile2(process, virtual_base + placeholder_begin, MEM_PRESERVE_PLACEHOLDER)) { LOG_CRITICAL(HW_Memory, "Failed to unmap placeholder"); } // If we have to remap memory regions due to partial unmaps, we are in a data race as // Windows doesn't support remapping memory without unmapping first. Avoid adding any extra // logic within the panic region described below. // Panic region, we are in a data race right now if (split_left || split_right) { Split(unmap_begin, unmap_end - unmap_begin); } if (split_left) { MapView(placeholder_begin, host_offset, unmap_begin - placeholder_begin); } if (split_right) { MapView(unmap_end, host_offset + unmap_end - placeholder_begin, placeholder_end - unmap_end); } // End panic region size_t coalesce_begin = unmap_begin; if (!split_left) { // Try to coalesce pages to the left coalesce_begin = it == begin ? 0 : std::prev(it)->upper(); if (coalesce_begin != placeholder_begin) { Coalesce(coalesce_begin, unmap_end - coalesce_begin); } } if (!split_right) { // Try to coalesce pages to the right const auto next = std::next(it); const size_t next_begin = next == end ? virtual_size : next->lower(); if (placeholder_end != next_begin) { // We can coalesce to the right Coalesce(coalesce_begin, next_begin - coalesce_begin); } } // Remove and reinsert placeholder trackers UntrackPlaceholder(it); if (split_left) { TrackPlaceholder(placeholder_begin, host_offset, unmap_begin - placeholder_begin); } if (split_right) { TrackPlaceholder(unmap_end, host_offset + unmap_end - placeholder_begin, placeholder_end - unmap_end); } return true; } void MapView(size_t virtual_offset, size_t host_offset, size_t length) { if (!pfn_MapViewOfFile3(backing_handle, process, virtual_base + virtual_offset, host_offset, length, MEM_REPLACE_PLACEHOLDER, PAGE_READWRITE, nullptr, 0)) { LOG_CRITICAL(HW_Memory, "Failed to map placeholder"); } } void Split(size_t virtual_offset, size_t length) { if (!VirtualFreeEx(process, reinterpret_cast(virtual_base + virtual_offset), length, MEM_RELEASE | MEM_PRESERVE_PLACEHOLDER)) { LOG_CRITICAL(HW_Memory, "Failed to split placeholder"); } } void Coalesce(size_t virtual_offset, size_t length) { if (!VirtualFreeEx(process, reinterpret_cast(virtual_base + virtual_offset), length, MEM_RELEASE | MEM_COALESCE_PLACEHOLDERS)) { LOG_CRITICAL(HW_Memory, "Failed to coalesce placeholders"); } } void TrackPlaceholder(size_t virtual_offset, size_t host_offset, size_t length) { placeholders.insert({virtual_offset, virtual_offset + length}); placeholder_host_pointers.emplace(virtual_offset, host_offset); } void UntrackPlaceholder(boost::icl::separate_interval_set::iterator it) { placeholder_host_pointers.erase(it->lower()); placeholders.erase(it); } /// Return true when a given memory region is a "nieche" and the placeholders don't have to be /// split. bool IsNiechePlaceholder(size_t virtual_offset, size_t length) const { const auto it = placeholders.upper_bound({virtual_offset, virtual_offset + length}); if (it != placeholders.end() && it->lower() == virtual_offset + length) { return it == placeholders.begin() ? virtual_offset == 0 : std::prev(it)->upper() == virtual_offset; } return false; } HANDLE process{}; ///< Current process handle HANDLE backing_handle{}; ///< File based backing memory DynamicLibrary kernelbase_dll; PFN_CreateFileMapping2 pfn_CreateFileMapping2{}; PFN_VirtualAlloc2 pfn_VirtualAlloc2{}; PFN_MapViewOfFile3 pfn_MapViewOfFile3{}; PFN_UnmapViewOfFile2 pfn_UnmapViewOfFile2{}; std::mutex placeholder_mutex; ///< Mutex for placeholders boost::icl::separate_interval_set placeholders; ///< Mapped placeholders std::unordered_map placeholder_host_pointers; ///< Placeholder backing offset }; #elif defined(__linux__) || defined(__FreeBSD__) // ^^^ Windows ^^^ vvv Linux vvv #ifdef ARCHITECTURE_arm64 static void* ChooseVirtualBase(size_t virtual_size) { constexpr uintptr_t Map39BitSize = (1ULL << 39); constexpr uintptr_t Map36BitSize = (1ULL << 36); // This is not a cryptographic application, we just want something random. std::mt19937_64 rng; // We want to ensure we are allocating at an address aligned to the L2 block size. // For Qualcomm devices, we must also allocate memory above 36 bits. const size_t lower = Map36BitSize / HugePageSize; const size_t upper = (Map39BitSize - virtual_size) / HugePageSize; const size_t range = upper - lower; // Try up to 64 times to allocate memory at random addresses in the range. for (int i = 0; i < 64; i++) { // Calculate a possible location. uintptr_t hint_address = ((rng() % range) + lower) * HugePageSize; // Try to map. // Note: we may be able to take advantage of MAP_FIXED_NOREPLACE here. void* map_pointer = mmap(reinterpret_cast(hint_address), virtual_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0); // If we successfully mapped, we're done. if (reinterpret_cast(map_pointer) == hint_address) { return map_pointer; } // Unmap if necessary, and try again. if (map_pointer != MAP_FAILED) { munmap(map_pointer, virtual_size); } } return MAP_FAILED; } #else static void* ChooseVirtualBase(size_t virtual_size) { return mmap(nullptr, virtual_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0); } #endif class HostMemory::Impl { public: explicit Impl(size_t backing_size_, size_t virtual_size_) : backing_size{backing_size_}, virtual_size{virtual_size_} { bool good = false; SCOPE_EXIT({ if (!good) { Release(); } }); long page_size = sysconf(_SC_PAGESIZE); if (page_size != 0x1000) { LOG_CRITICAL(HW_Memory, "page size {:#x} is incompatible with 4K paging", page_size); throw std::bad_alloc{}; } // Backing memory initialization #ifdef ANDROID fd = ASharedMemory_create("HostMemory", backing_size); #elif defined(__FreeBSD__) && __FreeBSD__ < 13 // XXX Drop after FreeBSD 12.* reaches EOL on 2024-06-30 fd = shm_open(SHM_ANON, O_RDWR, 0600); #else fd = memfd_create("HostMemory", 0); #endif if (fd < 0) { LOG_CRITICAL(HW_Memory, "memfd_create failed: {}", strerror(errno)); throw std::bad_alloc{}; } #ifndef ANDROID // Defined to extend the file with zeros int ret = ftruncate(fd, backing_size); if (ret != 0) { LOG_CRITICAL(HW_Memory, "ftruncate failed with {}, are you out-of-memory?", strerror(errno)); throw std::bad_alloc{}; } #endif backing_base = static_cast( mmap(nullptr, backing_size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)); if (backing_base == MAP_FAILED) { LOG_CRITICAL(HW_Memory, "mmap failed: {}", strerror(errno)); throw std::bad_alloc{}; } // Virtual memory initialization #if defined(__FreeBSD__) virtual_base = static_cast(mmap(nullptr, virtual_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_ALIGNED_SUPER, -1, 0)); if (virtual_base == MAP_FAILED) { virtual_base = static_cast( mmap(nullptr, virtual_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0)); if (virtual_base == MAP_FAILED) { LOG_CRITICAL(HW_Memory, "mmap failed: {}", strerror(errno)); throw std::bad_alloc{}; } } #else virtual_base = virtual_map_base = static_cast(ChooseVirtualBase(virtual_size)); if (virtual_base == MAP_FAILED) { LOG_CRITICAL(HW_Memory, "mmap failed: {}", strerror(errno)); throw std::bad_alloc{}; } madvise(virtual_base, virtual_size, MADV_HUGEPAGE); #endif free_manager.SetAddressSpace(virtual_base, virtual_size); good = true; } ~Impl() { Release(); } void Map(size_t virtual_offset, size_t host_offset, size_t length, MemoryPermission perms) { // Intersect the range with our address space. AdjustMap(&virtual_offset, &length); // We are removing a placeholder. free_manager.AllocateBlock(virtual_base + virtual_offset, length); // Deduce mapping protection flags. int flags = PROT_NONE; if (True(perms & MemoryPermission::Read)) { flags |= PROT_READ; } if (True(perms & MemoryPermission::Write)) { flags |= PROT_WRITE; } #ifdef ARCHITECTURE_arm64 if (True(perms & MemoryPermission::Execute)) { flags |= PROT_EXEC; } #endif void* ret = mmap(virtual_base + virtual_offset, length, flags, MAP_SHARED | MAP_FIXED, fd, host_offset); ASSERT_MSG(ret != MAP_FAILED, "mmap failed: {}", strerror(errno)); } void Unmap(size_t virtual_offset, size_t length) { // The method name is wrong. We're still talking about the virtual range. // We don't want to unmap, we want to reserve this memory. // Intersect the range with our address space. AdjustMap(&virtual_offset, &length); // Merge with any adjacent placeholder mappings. auto [merged_pointer, merged_size] = free_manager.FreeBlock(virtual_base + virtual_offset, length); void* ret = mmap(merged_pointer, merged_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); ASSERT_MSG(ret != MAP_FAILED, "mmap failed: {}", strerror(errno)); } void Protect(size_t virtual_offset, size_t length, bool read, bool write, bool execute) { // Intersect the range with our address space. AdjustMap(&virtual_offset, &length); int flags = PROT_NONE; if (read) { flags |= PROT_READ; } if (write) { flags |= PROT_WRITE; } #ifdef ARCHITECTURE_arm64 if (execute) { flags |= PROT_EXEC; } #endif int ret = mprotect(virtual_base + virtual_offset, length, flags); ASSERT_MSG(ret == 0, "mprotect failed: {}", strerror(errno)); } void EnableDirectMappedAddress() { virtual_base = nullptr; } const size_t backing_size; ///< Size of the backing memory in bytes const size_t virtual_size; ///< Size of the virtual address placeholder in bytes u8* backing_base{reinterpret_cast(MAP_FAILED)}; u8* virtual_base{reinterpret_cast(MAP_FAILED)}; u8* virtual_map_base{reinterpret_cast(MAP_FAILED)}; private: /// Release all resources in the object void Release() { if (virtual_map_base != MAP_FAILED) { int ret = munmap(virtual_map_base, virtual_size); ASSERT_MSG(ret == 0, "munmap failed: {}", strerror(errno)); } if (backing_base != MAP_FAILED) { int ret = munmap(backing_base, backing_size); ASSERT_MSG(ret == 0, "munmap failed: {}", strerror(errno)); } if (fd != -1) { int ret = close(fd); ASSERT_MSG(ret == 0, "close failed: {}", strerror(errno)); } } void AdjustMap(size_t* virtual_offset, size_t* length) { if (virtual_base != nullptr) { return; } // If we are direct mapped, we want to make sure we are operating on a region // that is in range of our virtual mapping. size_t intended_start = *virtual_offset; size_t intended_end = intended_start + *length; size_t address_space_start = reinterpret_cast(virtual_map_base); size_t address_space_end = address_space_start + virtual_size; if (address_space_start > intended_end || intended_start > address_space_end) { *virtual_offset = 0; *length = 0; } else { *virtual_offset = std::max(intended_start, address_space_start); *length = std::min(intended_end, address_space_end) - *virtual_offset; } } int fd{-1}; // memfd file descriptor, -1 is the error value of memfd_create FreeRegionManager free_manager{}; }; #else // ^^^ Linux ^^^ vvv Generic vvv class HostMemory::Impl { public: explicit Impl(size_t /*backing_size */, size_t /* virtual_size */) { // This is just a place holder. // Please implement fastmem in a proper way on your platform. throw std::bad_alloc{}; } void Map(size_t virtual_offset, size_t host_offset, size_t length, MemoryPermission perm) {} void Unmap(size_t virtual_offset, size_t length) {} void Protect(size_t virtual_offset, size_t length, bool read, bool write, bool execute) {} void EnableDirectMappedAddress() {} u8* backing_base{nullptr}; u8* virtual_base{nullptr}; }; #endif // ^^^ Generic ^^^ HostMemory::HostMemory(size_t backing_size_, size_t virtual_size_) : backing_size(backing_size_), virtual_size(virtual_size_) { try { // Try to allocate a fastmem arena. // The implementation will fail with std::bad_alloc on errors. impl = std::make_unique(AlignUp(backing_size, PageAlignment), AlignUp(virtual_size, PageAlignment) + HugePageSize); backing_base = impl->backing_base; virtual_base = impl->virtual_base; if (virtual_base) { // Ensure the virtual base is aligned to the L2 block size. virtual_base = reinterpret_cast( Common::AlignUp(reinterpret_cast(virtual_base), HugePageSize)); virtual_base_offset = virtual_base - impl->virtual_base; } } catch (const std::bad_alloc&) { LOG_CRITICAL(HW_Memory, "Fastmem unavailable, falling back to VirtualBuffer for memory allocation"); fallback_buffer = std::make_unique>(backing_size); backing_base = fallback_buffer->data(); virtual_base = nullptr; } } HostMemory::~HostMemory() = default; HostMemory::HostMemory(HostMemory&&) noexcept = default; HostMemory& HostMemory::operator=(HostMemory&&) noexcept = default; void HostMemory::Map(size_t virtual_offset, size_t host_offset, size_t length, MemoryPermission perms) { ASSERT(virtual_offset % PageAlignment == 0); ASSERT(host_offset % PageAlignment == 0); ASSERT(length % PageAlignment == 0); ASSERT(virtual_offset + length <= virtual_size); ASSERT(host_offset + length <= backing_size); if (length == 0 || !virtual_base || !impl) { return; } impl->Map(virtual_offset + virtual_base_offset, host_offset, length, perms); } void HostMemory::Unmap(size_t virtual_offset, size_t length) { ASSERT(virtual_offset % PageAlignment == 0); ASSERT(length % PageAlignment == 0); ASSERT(virtual_offset + length <= virtual_size); if (length == 0 || !virtual_base || !impl) { return; } impl->Unmap(virtual_offset + virtual_base_offset, length); } void HostMemory::Protect(size_t virtual_offset, size_t length, bool read, bool write, bool execute) { ASSERT(virtual_offset % PageAlignment == 0); ASSERT(length % PageAlignment == 0); ASSERT(virtual_offset + length <= virtual_size); if (length == 0 || !virtual_base || !impl) { return; } impl->Protect(virtual_offset + virtual_base_offset, length, read, write, execute); } void HostMemory::EnableDirectMappedAddress() { if (impl) { impl->EnableDirectMappedAddress(); virtual_size += reinterpret_cast(virtual_base); } } } // namespace Common