"Unmagics" quite a few magic constants within this code, making it much
easier to understand. Particularly given this factors out specific
sections into their own self-contained lambda functions.
These are actually quite important indicators of thread lifetimes, so
they should be going into the debug log, rather than being treated as
misc info and delegated to the trace log.
Makes the code much nicer to follow in terms of behavior and control
flow. It also fixes a few bugs in the implementation.
Notably, the thread's owner process shouldn't be accessed in order to
retrieve the core mask or ideal core. This should be done through the
current running process. The only reason this bug wasn't encountered yet
is because we currently only support running one process, and thus every
owner process will be the current process.
We also weren't checking against the process' CPU core mask to see if an
allowed core is specified or not.
With this out of the way, it'll be less noisy to implement proper
handling of the affinity flags internally within the kernel thread
instances.
Provides serialization/deserialization to the database in system save files, accessors for database state and proper handling of both major Mii formats (MiiInfo and MiiStoreData)
This option allows picking the compatibility profile since a lot of bugs
are fixed in it. We devs will use this option to easierly debug current
problems in our Core implementation.:wq
This is a holdover from Citra, where the 3DS has both
WaitSynchronization1 and WaitSynchronizationN. The switch only has one
form of wait synchronizing (literally WaitSynchonization). This allows
us to throw out code that doesn't apply at all to the Switch kernel.
Because of this unnecessary dichotomy within the wait synchronization
utilities, we were also neglecting to properly handle waiting on
multiple objects.
While we're at it, we can also scrub out any lingering references to
WaitSynchronization1/WaitSynchronizationN in comments, and change them
to WaitSynchronization (or remove them if the mention no longer
applies).
The actual behavior of this function is slightly more complex than what
we're currently doing within the supervisor call. To avoid dumping most
of this behavior in the supervisor call itself, we can migrate this to
another function.
This member variable is entirely unused. It was only set but never
actually utilized. Given that, we can remove it to get rid of noise in
the thread interface.
Essentially performs the inverse of svcMapProcessCodeMemory. This unmaps
the aliasing region first, then restores the general traits of the
aliased memory.
What this entails, is:
- Restoring Read/Write permissions to the VMA.
- Restoring its memory state to reflect it as a general heap memory region.
- Clearing the memory attributes on the region.
This gives us significantly more control over where in the
initialization process we start execution of the main process.
Previously we were running the main process before the CPU or GPU
threads were initialized (not good). This amends execution to start
after all of our threads are properly set up.
Initially required due to the split codepath with how the initial main
process instance was initialized. We used to initialize the process
like:
Init() {
main_process = Process::Create(...);
kernel.MakeCurrentProcess(main_process.get());
}
Load() {
const auto load_result = loader.Load(*kernel.GetCurrentProcess());
if (load_result != Loader::ResultStatus::Success) {
// Handle error here.
}
...
}
which presented a problem.
Setting a created process as the main process would set the page table
for that process as the main page table. This is fine... until we get to
the part that the page table can have its size changed in the Load()
function via NPDM metadata, which can dictate either a 32-bit, 36-bit,
or 39-bit usable address space.
Now that we have full control over the process' creation in load, we can
simply set the initial process as the main process after all the loading
is done, reflecting the potential page table changes without any
special-casing behavior.
We can also remove the cache flushing within LoadModule(), as execution
wouldn't have even begun yet during all usages of this function, now
that we have the initialization order cleaned up.
Now that we have dependencies on the initialization order, we can move
the creation of the main process to a more sensible area: where we
actually load in the executable data.
This allows localizing the creation and loading of the process in one
location, making the initialization of the process much nicer to trace.
Like with CPU emulation, we generally don't want to fire off the threads
immediately after the relevant classes are initialized, we want to do
this after all necessary data is done loading first.
This splits the thread creation into its own interface member function
to allow controlling when these threads in particular get created.
Our initialization process is a little wonky than one would expect when
it comes to code flow. We initialize the CPU last, as opposed to
hardware, where the CPU obviously needs to be first, otherwise nothing
else would work, and we have code that adds checks to get around this.
For example, in the page table setting code, we check to see if the
system is turned on before we even notify the CPU instances of a page
table switch. This results in dead code (at the moment), because the
only time a page table switch will occur is when the system is *not*
running, preventing the emulated CPU instances from being notified of a
page table switch in a convenient manner (technically the code path
could be taken, but we don't emulate the process creation svc handlers
yet).
This moves the threads creation into its own member function of the core
manager and restores a little order (and predictability) to our
initialization process.
Previously, in the multi-threaded cases, we'd kick off several threads
before even the main kernel process was created and ready to execute (gross!).
Now the initialization process is like so:
Initialization:
1. Timers
2. CPU
3. Kernel
4. Filesystem stuff (kind of gross, but can be amended trivially)
5. Applet stuff (ditto in terms of being kind of gross)
6. Main process (will be moved into the loading step in a following
change)
7. Telemetry (this should be initialized last in the future).
8. Services (4 and 5 should ideally be alongside this).
9. GDB (gross. Uses namespace scope state. Needs to be refactored into a
class or booted altogether).
10. Renderer
11. GPU (will also have its threads created in a separate step in a
following change).
Which... isn't *ideal* per-se, however getting rid of the wonky
intertwining of CPU state initialization out of this mix gets rid of
most of the footguns when it comes to our initialization process.
Some objects declare their handle type as const, while others declare it
as constexpr. This makes the const ones constexpr for consistency, and
prevent unexpected compilation errors if these happen to be attempted to be
used within a constexpr context.
These indicate options that alter how a read/write is performed.
Currently we don't need to handle these, as the only one that seems to
be used is for writes, but all the custom options ever seem to do is
immediate flushing, which we already do by default.
We need to ensure dynarmic gets a valid pointer if the page table is
resized (the relevant pointers would be invalidated in this scenario).
In this scenario, the page table can be resized depending on what kind
of address space is specified within the NPDM metadata (if it's
present).
Adjusts the interface of the wrappers to take a system reference, which
allows accessing a system instance without using the global accessors.
This also allows getting rid of all global accessors within the
supervisor call handling code. While this does make the wrappers
themselves slightly more noisy, this will be further cleaned up in a
follow-up. This eliminates the global system accessors in the current
code while preserving the existing interface.
Keeps the return type consistent with the function name. While we're at
it, we can also reduce the amount of boilerplate involved with handling
these by using structured bindings.
BitField has been trivially copyable since
e99a148628, so we can eliminate these
TODO comments and use ReadObject() directly instead of memcpying the
data.
Rather than make a full copy of the path, we can just use a string view
and truncate the viewed portion of the string instead of creating a totally
new truncated string.
In several places, we have request parsers where there's nothing to
really parse, simply because the HLE function in question operates on
buffers. In these cases we can just remove these instances altogether.
In the other cases, we can retrieve the relevant members from the parser
and at least log them out, giving them some use.
Applies the override specifier where applicable. In the case of
destructors that are defaulted in their definition, they can
simply be removed.
This also removes the unnecessary inclusions being done in audin_u and
audrec_u, given their close proximity.
Quite a bit of these were out of sync with Switchbrew (and in some cases
entirely wrong). While we're at it, also expand the section of named
members. A segment within the control metadata is used to specify
maximum values for the user, device, and cache storage max sizes and
journal sizes.
These appear to be generally used by the am service (e.g. in
CreateCacheStorage, etc).
We need to be checking whether or not the given address is within the
kernel address space or if the given address isn't word-aligned and bail
in these scenarios instead of trashing any kernel state.
For whatever reason, shared memory was being used here instead of
transfer memory, which (quite clearly) will not work based off the name
of the function.
This corrects this wonky usage of shared memory.
Given server sessions can be given a name, we should allow retrieving
it instead of using the default implementation of GetName(), which would
just return "[UNKNOWN KERNEL OBJECT]".
The AddressArbiter type isn't actually used, given the arbiter itself
isn't a direct kernel object (or object that implements the wait object
facilities).
Given this, we can remove the enum entry entirely.
Similarly like svcGetProcessList, this retrieves the list of threads
from the current process. In the kernel itself, a process instance
maintains a list of threads, which are used within this function.
Threads are registered to a process' thread list at thread
initialization, and unregistered from the list upon thread destruction
(if said thread has a non-null owning process).
We assert on the debug event case, as we currently don't implement
kernel debug objects.
Now that ShouldWait() is a const qualified member function, this one can
be made const qualified as well, since it can handle passing a const
qualified this pointer to ShouldWait().
Previously this was performing a u64 + int sign conversion. When dealing
with addresses, we should generally be keeping the arithmetic in the
same signedness type.
This also gets rid of the static lifetime of the constant, as there's no
need to make a trivial type like this potentially live for the entire
duration of the program.
This doesn't really provide any benefit to the resource limit interface.
There's no way for callers to any of the service functions for resource
limits to provide a custom name, so all created instances of resource
limits other than the system resource limit would have a name of
"Unknown".
The system resource limit itself is already trivially identifiable from
its limit values, so there's no real need to take up space in the object to
identify one object meaningfully out of N total objects.
Since C++17, the introduction of deduction guides for locking facilities
means that we no longer need to hardcode the mutex type into the locks
themselves, making it easier to switch mutex types, should it ever be
necessary in the future.
Since C++17, we no longer need to explicitly specify the type of the
mutex within the lock_guard. The type system can now deduce these with
deduction guides.
Based off RE, most of these structure members are register values, which
makes, sense given this service is used to convey fatal errors.
One member indicates the program entry point address, one is a set of
bit flags used to determine which registers to print, and one member
indicates the architecture type.
The only member that still isn't determined is the final member within
the data structure.
The kernel makes sure that the given size to unmap is always the same
size as the entire region managed by the shared memory instance,
otherwise it returns an error code signifying an invalid size.
This is similarly done for transfer memory (which we already check for).
This was initially added to prevent problems from stubbed/not implemented NFC services, but as we never encountered such and as it's only used in a deprecated function anyway, I guess we can just remove it to prevent more clutter of the settings.
Reports the (mostly) correct size through svcGetInfo now for queries to
total used physical memory. This still doesn't correctly handle memory
allocated via svcMapPhysicalMemory, however, we don't currently handle
that case anyways.
This will make operating with the process-related SVC commands much
nicer in the future (the parameter representing the stack size in
svcStartProcess is a 64-bit value).
These functions act in tandem similar to how a lock or mutex require a
balanced lock()/unlock() sequence.
EnterFatalSection simply increments a counter for how many times it has
been called, while LeaveFatalSection ensures that a previous call to
EnterFatalSection has occured. If a previous call has occurred (the
counter is not zero), then the counter gets decremented as one would
expect. If a previous call has not occurred (the counter is zero), then
an error code is returned.
In some cases, our callbacks were using s64 as a parameter, and in other
cases, they were using an int, which is inconsistent.
To make all callbacks consistent, we can just use an s64 as the type for
late cycles, given it gets rid of the need to cast internally.
While we're at it, also resolve some signed/unsigned conversions that
were occurring related to the callback registration.
One behavior that we weren't handling properly in our heap allocation
process was the ability for the heap to be shrunk down in size if a
larger size was previously requested.
This adds the basic behavior to do so and also gets rid of HeapFree, as
it's no longer necessary now that we have allocations and deallocations
going through the same API function.
While we're at it, fully document the behavior that this function
performs.
Makes it more obvious that this function is intending to stand in for
the actual supervisor call itself, and not acting as a general heap
allocation function.
Also the following change will merge the freeing behavior of HeapFree
into this function, so leaving it as HeapAllocate would be misleading.
In cases where HeapAllocate is called with the same size of the current
heap, we can simply do nothing and return successfully.
This avoids doing work where we otherwise don't have to. This is also
what the kernel itself does in this scenario.
Another holdover from citra that can be tossed out is the notion of the
heap needing to be allocated in different addresses. On the switch, the
base address of the heap will always be managed by the memory allocator
in the kernel, so this doesn't need to be specified in the function's
interface itself.
The heap on the switch is always allocated with read/write permissions,
so we don't need to add specifying the memory permissions as part of the
heap allocation itself either.
This also corrects the error code returned from within the function.
If the size of the heap is larger than the entire heap region, then the
kernel will report an out of memory condition.
The use of a shared_ptr is an implementation detail of the VMManager
itself when mapping memory. Because of that, we shouldn't require all
users of the CodeSet to have to allocate the shared_ptr ahead of time.
It's intended that CodeSet simply pass in the required direct data, and
that the memory manager takes care of it from that point on.
This means we just do the shared pointer allocation in a single place,
when loading modules, as opposed to in each loader.
This source file was utilizing its own version of the NSO header.
Instead of keeping this around, we can have the patch manager also use
the version of the header that we have defined in loader/nso.h
The total struct itself is 0x100 (256) bytes in size, so we should be
providing that amount of data.
Without the data, this can result in omitted data from the final loaded
NSO file.
Makes it more evident that one is for actual code and one is for actual
data. Mutable and static are less than ideal terms here, because
read-only data is technically not mutable, but we were mapping it with
that label.
In 93da8e0abf, the page table construct
was moved to the common library (which utilized these inclusions). Since
the move, nothing requires these headers to be included within the
memory header.
- GPU will be released on shutdown, before pages are unmapped.
- On subsequent runs, current_page_table will be not nullptr, but GPU might not be valid yet.
Given this is utilized by the loaders, this allows avoiding inclusion of
the kernel process definitions where avoidable.
This also keeps the loading format for all executable data separate from
the kernel objects.
Neither the NRO or NSO loaders actually make use of the functions or
members provided by the Linker interface, so we can just remove the
inheritance altogether.
This function passes in the desired main applet and library applet
volume levels. We can then just pass those values back within the
relevant volume getter functions, allowing us to unstub those as well.
The initial values for the library and main applet volumes differ. The
main applet volume is 0.25 by default, while the library applet volume
is initialized to 1.0 by default in the services themselves.
Rather than make a global accessor for this sort of thing. We can make
it a part of the thread interface itself. This allows getting rid of a
hidden global accessor in the kernel code.
This condition was checking against the nominal thread priority, whereas
the kernel itself checks against the current priority instead. We were
also assigning the nominal priority, when we should be assigning
current_priority, which takes priority inheritance into account.
This can lead to the incorrect priority being assigned to a thread.
Given we recursively update the relevant threads, we don't need to go
through the whole mutex waiter list. This matches what the kernel does
as well (only accessing the first entry within the waiting list).
* gdbstub: fix IsMemoryBreak() returning false while connected to client
As a result, the only existing codepath for a memory watchpoint hit to break into GDB (InterpeterMainLoop, GDB_BP_CHECK, ARMul_State::RecordBreak) is finally taken,
which exposes incorrect logic* in both RecordBreak and ServeBreak.
* a blank BreakpointAddress structure is passed, which sets r15 (PC) to NULL
* gdbstub: DynCom: default-initialize two members/vars used in conditionals
* gdbstub: DynCom: don't record memory watchpoint hits via RecordBreak()
For now, instead check for GDBStub::IsMemoryBreak() in InterpreterMainLoop and ServeBreak.
Fixes PC being set to a stale/unhit breakpoint address (often zero) when a memory watchpoint (rwatch, watch, awatch) is handled in ServeBreak() and generates a GDB trap.
Reasons for removing a call to RecordBreak() for memory watchpoints:
* The``breakpoint_data`` we pass is typed Execute or None. It describes the predicted next code breakpoint hit relative to PC;
* GDBStub::IsMemoryBreak() returns true if a recent Read/Write operation hit a watchpoint. It doesn't specify which in return, nor does it trace it anywhere. Thus, the only data we could give RecordBreak() is a placeholder BreakpointAddress at offset NULL and type Access. I found the idea silly, compared to simply relying on GDBStub::IsMemoryBreak().
There is currently no measure in the code that remembers the addresses (and types) of any watchpoints that were hit by an instruction, in order to send them to GDB as "extended stop information."
I'm considering an implementation for this.
* gdbstub: Change an ASSERT to DEBUG_ASSERT
I have never seen the (Reg[15] == last_bkpt.address) assert fail in practice, even after several weeks of (locally) developping various branches around GDB. Only leave it inside Debug builds.
Makes it an instantiable class like it is in the actual kernel. This
will also allow removing reliance on global accessors in a following
change, now that we can encapsulate a reference to the system instance
in the class.
Within the kernel, shared memory and transfer memory facilities exist as
completely different kernel objects. They also have different validity
checking as well. Therefore, we shouldn't be treating the two as the
same kind of memory.
They also differ in terms of their behavioral aspect as well. Shared
memory is intended for sharing memory between processes, while transfer
memory is intended to be for transferring memory to other processes.
This breaks out the handling for transfer memory into its own class and
treats it as its own kernel object. This is also important when we
consider resource limits as well. Particularly because transfer memory
is limited by the resource limit value set for it.
While we currently don't handle resource limit testing against objects
yet (but we do allow setting them), this will make implementing that
behavior much easier in the future, as we don't need to distinguish
between shared memory and transfer memory allocations in the same place.
With this, all kernel objects finally have all of their data members
behind an interface, making it nicer to reason about interactions with
other code (as external code no longer has the freedom to totally alter
internals and potentially messing up invariants).
After doing a little more reading up on the Opus codec, it turns out
that the multistream API that is part of libopus can handle regular
packets. Regular packets are just a degenerate case of multistream Opus
packets, and all that's necessary is to pass the number of streams as 1
and provide a basic channel mapping, then everything works fine for
that case.
This allows us to get rid of the need to use both APIs in the future
when implementing multistream variants in a follow-up PR, greatly
simplifying the code that needs to be written.
Previously this was required, as BitField wasn't trivially copyable.
BitField has since been made trivially copyable, so now this isn't
required anymore.
Relocates the error code to where it's most related, similar to how all
the other error codes are. Previously we were including a non-generic
error in the main result code header.
These can just be passed regularly, now that we use fmt instead of our
old logging system.
While we're at it, make the parameters to MakeFunctionString
std::string_views.
There's no real need to use a shared lifetime here, since we don't
actually expose them to anything else. This is also kind of an
unnecessary use of the heap given the objects themselves are so small;
small enough, in fact that changing over to optionals actually reduces
the overall size of the HLERequestContext struct (818 bytes to 808
bytes).
Now that we have the address arbiter extracted to its own class, we can
fix an innaccuracy with the kernel. Said inaccuracy being that there
isn't only one address arbiter. Each process instance contains its own
AddressArbiter instance in the actual kernel.
This fixes that and gets rid of another long-standing issue that could
arise when attempting to create more than one process.
Similar to how WaitForAddress was isolated to its own function, we can
also move the necessary conditional checking into the address arbiter
class itself, allowing us to hide the implementation details of it from
public use.
Rather than let the service call itself work out which function is the
proper one to call, we can make that a behavior of the arbiter itself,
so we don't need to directly expose those implementation details.
This will be utilized by more than just that class in the future. This
also renames it from OpusHeader to OpusPacketHeader to be more specific
about what kind of header it is.
Places all error codes in an easily includable header.
This also corrects the unsupported error code (I accidentally used the
hex value when I meant to use the decimal one).
Places all of the functions for address arbiter operation into a class.
This will be necessary for future deglobalizing efforts related to both
the memory and system itself.
Removes a few inclusion dependencies from the headers or replaces
existing ones with ones that don't indirectly include the required
headers.
This allows removing an inclusion of core/memory.h, meaning that if the
memory header is ever changed in the future, it won't result in
rebuilding the entirety of the HLE services (as the IPC headers are used
quite ubiquitously throughout the HLE service implementations).
Avoids directly relying on the global system instance and instead makes
an arbitrary system instance an explicit dependency on construction.
This also allows removing dependencies on some global accessor functions
as well.
Given we already pass in a reference to the kernel that the shared
memory instance is created under, we can just use that to check the
current process, rather than using the global accessor functions.
This allows removing direct dependency on the system instance entirely.
The comment already invalidates itself: neither MMIO nor rasterizer cache belongsHLE kernel state. This mutex has a too large scope if MMIO or cache is included, which is prone to dead lock when multiple thread acquires these resource at the same time. If necessary, each MMIO component or rasterizer should have their own lock.
This currently has the same behavior as the regular
OpenAudioRenderer API function, so we can just move the code within
OpenAudioRenderer to an internal function that both service functions
call.
This service function appears to do nothing noteworthy on the switch.
All it does at the moment is either return an error code or abort the
system. Given we obviously don't want to kill the system, we just opt
for always returning the error code.
Provides names for previously unknown entries (aside from the two u8
that appear to be padding bytes, and a single word that also appears
to be reserved or padding).
This will be useful in subsequent changes when unstubbing behavior related
to the audio renderer services.
This function is also supposed to check its given policy type with the
permission of the service itself. This implements the necessary
machinery to unstub these functions.
Policy::User seems to just be basic access (which is probably why vi:u
is restricted to that policy), while the other policy seems to be for
extended abilities regarding which displays can be managed and queried,
so this is assumed to be for a background compositor (which I've named,
appropriately, Policy::Compositor).
There's no real reason this shouldn't be allowed, given some values sent
via a request can be signed. This also makes it less annoying to work
with popping enum values, given an enum class with no type specifier
will work out of the box now.
It's also kind of an oversight to allow popping s64 values, but nothing
else.
This didn't really provide much benefit here, especially since the
subsequent change requires that the behavior for each service's
GetDisplayService differs in a minor detail.
This also arguably makes the services nicer to read, since it gets rid
of an indirection in the class hierarchy.
The kernel allows restricting the total size of the handle table through
the process capability descriptors. Until now, this functionality wasn't
hooked up. With this, the process handle tables become properly restricted.
In the case of metadata-less executables, the handle table will assume
the maximum size is requested, preserving the behavior that existed
before these changes.
The NVFlinger service is already passed into services that need to
guarantee its lifetime, so the BufferQueue instances will already live
as long as they're needed. Making them std::shared_ptr instances in this
case is unnecessary.
Like the previous changes made to the Display struct, this prepares the
Layer struct for changes to its interface. Given Layer will be given
more invariants in the future, we convert it into a class to better
signify that.
With the display and layer structures relocated to the vi service, we
can begin giving these a proper interface before beginning to properly
support the display types.
This converts the display struct into a class and provides it with the
necessary functions to preserve behavior within the NVFlinger class.
* Fixes Unicode Key File Directories
Adds code so that when loading a file it converts to UTF16 first, to
ensure the files can be opened. Code borrowed from FileUtil::Exists.
* Update src/core/crypto/key_manager.cpp
Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
* Update src/core/crypto/key_manager.cpp
Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
* Using FileUtil instead to be cleaner.
* Update src/core/crypto/key_manager.cpp
Co-Authored-By: Jungorend <Jungorend@users.noreply.github.com>
These are more closely related to the vi service as opposed to the
intermediary nvflinger.
This also places them in their relevant subfolder, as future changes to
these will likely result in subclassing to represent various displays
and services, as they're done within the service itself on hardware.
The reasoning for prefixing the display and layer source files is to
avoid potential clashing if two files with the same name are compiled
(e.g. if 'display.cpp/.h' or 'layer.cpp/.h' is added to another service
at any point), which MSVC will actually warn against. This prevents that
case from occurring.
This also presently coverts the std::array introduced within
f45c25aaba back to a std::vector to allow
the forward declaration of the Display type. Forward declaring a type
within a std::vector is allowed since the introduction of N4510
(http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4510.html) by
Zhihao Yuan.
A fairly trivial change. Other sections of the codebase use nested
namespaces instead of separate namespaces here. This one must have just
been overlooked.
Gets rid of the largest set of mutable global state within the core.
This also paves a way for eliminating usages of GetInstance() on the
System class as a follow-up.
Note that no behavioral changes have been made, and this simply extracts
the functionality into a class. This also has the benefit of making
dependencies on the core timing functionality explicit within the
relevant interfaces.
The necessity of this parameter is dubious at best, and in 2019 probably
offers completely negligible savings as opposed to just leaving this
enabled. This removes it and simplifies the overall interface.
Places all of the timing-related functionality under the existing Core
namespace to keep things consistent, rather than having the timing
utilities sitting in its own completely separate namespace.
This commit it automatically generated by command in zsh:
sed -i -- 's/BitField<\(.*\)_le>/BitField<\1>/g' **/*(D.)
BitField is now aware to endianness and default to little endian. It expects a value representation type without storage specification for its template parameter.
Converts many of the Find* functions to return a std::optional<T> as
opposed to returning the raw return values directly. This allows
removing a few assertions and handles error cases like the service
itself does.
A holdover from citra, the Horizon kernel on the switch has no
prominent kernel object that functions as a timer. At least not
to the degree of sophistication that this class provided.
As such, this can be removed entirely. This class also wasn't used at
all in any meaningful way within the core, so this was just code sitting
around doing nothing. This also allows removing a few things from the
main KernelCore class that allows it to use slightly less resources
overall (though very minor and not anything really noticeable).
No inheritors of the WaitObject class actually make use of their own
implementations of these functions, so they can be made non-virtual.
It's also kind of sketchy to allow overriding how the threads get added
to the list anyways, given the kernel itself on the actual hardware
doesn't seem to customize based off this.
This functions almost identically to DecodeInterleavedWithPerfOld,
however this function also has the ability to reset the decoder context.
This is documented as a potentially desirable thing in the libopus
manual in some circumstances as it says for the OPUS_RESET_STATE ctl:
"This should be called when switching streams in order to prevent the
back to back decoding from giving different result from one at a time
decoding."
In addition to the default, external, EDID, and internal displays,
there's also a null display provided as well, which as the name
suggests, does nothing but discard all commands given to it. This is
provided for completeness.
Opening a display isn't really a thing to warn about. It's an expected
thing, so this can be a debug log. This also alters the string to
indicate the display name better.
Opening "Default" display reads a little nicer compared to Opening
display Default.
This quite literally functions as a basic setter. No other error
checking or anything (since there's nothing to really check against).
With this, it completes the pm:bm interface in terms of functionality.
This appears to be a vestigial API function that's only kept around for
compatibility's sake, given the function only returns a success error
code and exits.
Since that's the case, we can remove the stubbed notification from the
log, since doing nothing is technically the correct behavior in this
case.
Looking into the implementation of the C++ standard facilities that seem
to be within all modules, it appears that they use 7 as a break reason
to indicate an uncaught C++ exception.
This was primarily found via the third last function called within
Horizon's equivalent of libcxxabi's demangling_terminate_handler(),
which passes the value 0x80000007 to svcBreak.
This is a function that definitely doesn't always have a non-modifying
behavior across all implementations, so this should be made non-const.
This gets rid of the need to mark data members as mutable to work around
the fact mutating data members needs to occur.
These values are not equivalent, based off RE. The internal value is put
into a lookup table with the following values:
[3, 0, 1, 2, 4]
So the values absolutely do not map 1:1 like the comment was indicating.
Avoids entangling the IPC buffer appending with the actual operation of
converting the scaling values over. This also inserts the proper error
handling for invalid scaling values.
This appears to only check if the scaling mode can actually be
handled, rather than actually setting the scaling mode for the layer.
This implements the same error handling performed on the passed in
values.
Within the actual service, it makes no distinguishing between docked and
undocked modes. This will always return the constants values reporting
1280x720 as the dimensions.
This IPC command is simply a stub inside the actual service itself, and
just returns a successful error code regardless of input. This is likely
only retained in the service interface to not break older code that relied
upon it succeeding in some way.
In many cases, we didn't bother to log out any of the popped data
members. This logs them out to the console within the logging call to
provide more contextual information.
Internally within the vi services, this is essentially all that
OpenDefaultDisplay does, so it's trivial to just do the same, and
forward the default display string into the function.
It appears that the two members indicate whether a display has a bounded
number of layers (and if set, the second member indicates the total
number of layers).
This is a bounds check to ensure that the thread priority is within the
valid range of 0-64. If it exceeds 64, that doesn't necessarily mean
that an actual priority of 64 was expected (it actually means whoever
called the function screwed up their math).
Instead clarify the message to indicate the allowed range of thread
priorities.
Now that we handle the kernel capability descriptors we can correct
CreateThread to properly check against the core and priority masks
like the actual kernel does.
This makes the naming more closely match its meaning. It's just a
preferred core, not a required default core. This also makes the usages
of this term consistent across the thread and process implementations.
This function isn't a general purpose function that should be exposed to
everything, given it's specific to initializing the main thread for a
Process instance.
Given that, it's a tad bit more sensible to place this within
process.cpp, which keeps it visible only to the code that actually needs
it.
Provides extra information that makes it easier to tell if an executable
being run is using a 36-bit address space or a 39-bit address space.
While we don't support AArch32 executables yet, this also puts in
distinguishing information for the 32-bit address space types as well.
In all cases that these functions are needed, the VMManager can just be
retrieved and used instead of providing the same functions in Process'
interface.
This also makes it a little nicer dependency-wise, since it gets rid of
cases where the VMManager interface was being used, and then switched
over to using the interface for a Process instance. Instead, it makes
all accesses uniform and uses the VMManager instance for all necessary
tasks.
All the basic memory mapping functions did was forward to the Process'
VMManager instance anyways.
This stores a file in the save directory called '.yuzu_save_size' which stores the two save sizes (normal area and journaled area) sequentially as u64s.
Similar to the service capability flags, however, we currently don't
emulate the GIC, so this currently handles all interrupts as being valid
for the time being.
Handles the priority mask and core mask flags to allow building up the
masks to determine the usable thread priorities and cores for a kernel
process instance.
We've had the old kernel capability parser from Citra, however, this is
unused code and doesn't actually map to how the kernel on the Switch
does it. This introduces the basic functional skeleton for parsing
process capabilities.
If a thread handle is passed to svcGetProcessId, the kernel attempts to
access the process ID via the thread's instance's owning process.
Technically, this function should also be handling the kernel debug
objects as well, however we currently don't handle those kernel objects
yet, so I've left a note via a comment about it to remind myself when
implementing it in the future.
Starts the process ID counter off at 81, which is what the kernel itself
checks against internally when creating processes. It's actually
supposed to panic if the PID is less than 81 for a userland process.
Now it also indicates the name and max session count. This also gives a
name to the unknown bool. This indicates if the created port is supposed
to be using light handles or regular handles internally. This is passed
to the respective svcCreatePort parameter internally.
Allows capturing screenshot at the current internal resolution (native for software renderer), but a setting is available to capture it in other resolutions. The screenshot is saved to a single PNG in the current layout.
Adds the barebones enumeration constants and functions in place to
handle memory attributes, while also essentially leaving the attribute
itself non-functional.
Services created with the ServiceFramework base class install themselves as HleHandlers with an owning shared_ptr in the ServerPort ServiceFrameworkBase::port member variable, creating a cyclic ownership between ServiceFrameworkBase and the ServerPort, preventing deletion of the service objects.
Fix that by removing the ServiceFrameworkBase::port member because that was only used to detect multiple attempts at installing a port. Instead store a flag if the port was already installed to achieve the same functionality.
In the previous change, the memory writing was moved into the service
function itself, however it still had a problem, in that the entire
MemoryInfo structure wasn't being written out, only the first 32 bytes
of it were being written out. We still need to write out the trailing
two reference count members and zero out the padding bits.
Not doing this can result in wrong behavior in userland code in the following
scenario:
MemoryInfo info; // Put on the stack, not quaranteed to be zeroed out.
svcQueryMemory(&info, ...);
if (info.device_refcount == ...) // Whoops, uninitialized read.
This can also cause the wrong thing to happen if the user code uses
std::memcmp to compare the struct, with another one (questionable, but
allowed), as the padding bits are not guaranteed to be a deterministic
value. Note that the kernel itself also fully zeroes out the structure
before writing it out including the padding bits.
Moves the memory writes directly into QueryProcessMemory instead of
letting the wrapper function do it. It would be inaccurate to allow the
handler to do it because there's cases where memory shouldn't even be
written to. For example, if the given process handle is invalid.
HOWEVER, if the memory writing is within the wrapper, then we have no
control over if these memory writes occur, meaning in an error case, 68
bytes of memory randomly get trashed with zeroes, 64 of those being
written to wherever the memory info address points to, and the remaining
4 being written wherever the page info address points to.
One solution in this case would be to just conditionally check within
the handler itself, but this is kind of smelly, given the handler
shouldn't be performing conditional behavior itself, it's a behavior of
the managed function. In other words, if you remove the handler from the
equation entirely, does the function still retain its proper behavior?
In this case, no.
Now, we don't potentially trash memory from this function if an invalid
query is performed.
This would result in svcSetMemoryAttribute getting the wrong value for
its third parameter. This is currently fine, given the service function
is stubbed, however this will be unstubbed in a future change, so this
needs to change.
The kernel returns a memory info instance with the base address set to
the end of the address space, and the size of said block as
0 - address_space_end, it doesn't set both of said members to zero.
Gets the two structures out of an unrelated header and places them with
the rest of the memory management code.
This also corrects the structures. PageInfo appears to only contain a
32-bit flags member, and the extra padding word in MemoryInfo isn't
necessary.
Amends the MemoryState enum to use the same values like the actual
kernel does. Also provides the necessary operators to operate on them.
This will be necessary in the future for implementing
svcSetMemoryAttribute, as memory block state is checked before applying
the attribute.
The Process object kept itself alive indefinitely because its handle_table
contains a SharedMemory object which owns a reference to the same Process object,
creating a circular ownership scenario.
Break that up by storing only a non-owning pointer in the SharedMemory object.
fmt::format() returns a std::string instance by value, so calling
.c_str() on it here is equivalent to doing:
auto* ptr = std::string{}.c_str();
The data being pointed to isn't guaranteed to actually be valid anymore
after that expression ends. Instead, we can just take the string as is,
and provide the necessary formatting parameters.
Based off RE, the backing code only ever seems to use 0-2 as the range
of values 1 being a generic log enable, with 2 indicating logging should
go to the SD card. These are used as a set of flags internally.
Given we only care about receiving the log in general, we can just
always signify that we want logging in general.
This was causing some games (most notably Pokemon Quest) to softlock due to an event being fired when not supposed to. This also removes a hack wherein we were firing the state changed event when the game retrieves it, which is incorrect.
Amends it with missing values deduced from RE (ProperSystem being from
SwitchBrew for naming)
(SdCardUser wasn't that difficult to discern given it's used alongside
SdCardSystem when creating the save data indexer, based off the usage of
the string "saveDataIxrDbSd" nearby).
This was only ever public so that code could check whether or not a
handle was valid or not. Instead of exposing the object directly and
allowing external code to potentially mess with the map contents, we
just provide a member function that allows checking whether or not a
handle is valid.
This makes all member variables of the VMManager class private except
for the page table.
These auto-deduce the result based off its arguments, so there's no need
to do that work for the compiler, plus, the function return value itself
already indicates what we're returning.
No implementations actually modify instance state (and it would be
questionable to do that in the first place given the name), so we can
make this a const member function.
This allows the array to be constexpr. std::function is also allowed to
allocate memory, which makes its constructor non-trivial, we definitely
don't want to have all of these execute at runtime, taking up time
before the application can actually load.
While partially correct, this service call allows the retrieved event to
be null, as it also uses the same handle to check if it was referring to
a Process instance. The previous two changes put the necessary machinery
in place to allow for this, so we can simply call those member functions
here and be done with it.
Process instances can be waited upon for state changes. This is also
utilized by svcResetSignal, which will be modified in an upcoming
change. This simply puts all of the WaitObject related machinery in
place.
svcResetSignal relies on the event instance to have already been
signaled before attempting to reset it. If this isn't the case, then an
error code has to be returned.
This function simply does a handle table lookup for a writable event
instance identified by the given handle value. If a writable event
cannot be found for the given handle, then an invalid handle error is
returned. If a writable event is found, then it simply signals the
event, as one would expect.
svcCreateEvent operates by creating both a readable and writable event
and then attempts to add both to the current process' handle table.
If adding either of the events to the handle table fails, then the
relevant error from the handle table is returned.
If adding the readable event after the writable event to the table
fails, then the writable event is removed from the handle table and the
relevant error from the handle table is returned.
Note that since we do not currently test resource limits, we don't check
the resource limit table yet.
Two kernel object should absolutely never have the same handle ID type.
This can cause incorrect behavior when it comes to retrieving object
types from the handle table. In this case it allows converting a
WritableEvent into a ReadableEvent and vice-versa, which is undefined
behavior, since the object types are not the same.
This also corrects ClearEvent() to check both kernel types like the
kernel itself does.
Previously, ILibraryAppletAccessor would signal upon creation of any applet, but this is incorrect. A flag inside of the applet code determines whether or not creation should signal state change and swkbd happens to be one of these applets.
Load() is already given the process instance as a parameter, so instead
of coupling the class to the System class, we can just forward that
parameter to LoadNro()
The kernel uses the handle table of the current process to retrieve the
process that should be used to retrieve certain information. To someone
not familiar with the kernel, this might raise the question of "Ok,
sounds nice, but doesn't this make it impossible to retrieve information
about the current process?".
No, it doesn't, because HandleTable instances in the kernel have the
notion of a "pseudo-handle", where certain values allow the kernel to
lookup objects outside of a given handle table. Currently, there's only
a pseudo-handle for the current process (0xFFFF8001) and a pseudo-handle
for the current thread (0xFFFF8000), so to retrieve the current process,
one would just pass 0xFFFF8001 into svcGetInfo.
The lookup itself in the handle table would be something like:
template <typename T>
T* Lookup(Handle handle) {
if (handle == PSEUDO_HANDLE_CURRENT_PROCESS) {
return CurrentProcess();
}
if (handle == PSUEDO_HANDLE_CURRENT_THREAD) {
return CurrentThread();
}
return static_cast<T*>(&objects[handle]);
}
which, as is shown, allows accessing the current process or current
thread, even if those two objects aren't actually within the HandleTable
instance.
Our implementation of svcGetInfo was slightly incorrect in that we
weren't doing proper error checking everywhere. Instead, reorganize it
to be similar to how the kernel seems to do it.
We can just return a new instance of this when it's requested. This only
ever holds pointers to the existing registed caches, so it's not a large
object. Plus, this also gets rid of the need to keep around a separate
member function just to properly clear out the union.
Gets rid of one of five globals in the filesystem code.
This is the same behavior-wise as DeleteDirectoryRecursively, with the
only difference being that it doesn't delete the top level directory in
the hierarchy, so given:
root_dir/
- some_dir/
- File.txt
- OtherFile.txt
The end result is just:
root_dir/
More hardware accurate. On the actual system, there is a differentiation between the signaler and signalee, they form a client/server relationship much like ServerPort and ClientPort.
These parameters don't need to utilize a shared lifecycle directly in
the interface. Instead, the caller should provide a regular reference
for the function to use. This also allows the type system to flag
attempts to pass nullptr and makes it more generic, since it can now be
used in contexts where a shared_ptr isn't being used (in other words, we
don't constrain the usage of the interface to a particular mode of
memory management).
While we're at it, organize the array linearly, since clang formats the
array elements quite wide length-wise with the addition of the missing
'u'.
Technically also fixes patch lookup and icon lookup with Portuguese,
though I doubt anyone has actually run into this issue.
The opposite of the getter functions, this function sets the limit value
for a particular ResourceLimit resource category, with the restriction
that the new limit value must be equal to or greater than the current
resource value. If this is violated, then ERR_INVALID_STATE is returned.
e.g.
Assume:
current[Events] = 10;
limit[Events] = 20;
a call to this service function lowering the limit value to 10 would be
fine, however, attempting to lower it to 9 in this case would cause an
invalid state error.
This kernel service function is essentially the exact same as
svcGetResourceLimitLimitValue(), with the only difference being that it
retrieves the current value for a given resource category using the
provided resource limit handle, rather than retrieving the limiting
value of that resource limit instance.
Given these are exactly the same and only differ on returned values, we
can extract the existing code for svcGetResourceLimitLimitValue() to
handle both values.
This kernel service function retrieves the maximum allowable value for
a provided resource category for a given resource limit instance. Given
we already have the functionality added to the resource limit instance
itself, it's sufficient to just hook it up.
The error scenarios for this are:
1. If an invalid resource category type is provided, then ERR_INVALID_ENUM is returned.
2. If an invalid handle is provided, then ERR_INVALID_HANDLE is returned (bad thing goes in, bad thing goes out, as one would expect).
If neither of the above error cases occur, then the out parameter is
provided with the maximum limit value for the given category and success
is returned.
This function simply creates a ResourceLimit instance and attempts to
create a handle for it within the current process' handle table. If the
kernal fails to either create the ResourceLimit instance or create a
handle for the ResourceLimit instance, it returns a failure code
(OUT_OF_RESOURCE, and HANDLE_TABLE_FULL respectively). Finally, it exits
by providing the output parameter with the handle value for the
ResourceLimit instance and returning that it was successful.
Note: We do not return OUT_OF_RESOURCE because, if yuzu runs out of
available memory, then new will currently throw. We *could* allocate the
kernel instance with std::nothrow, however this would be inconsistent
with how all other kernel objects are currently allocated.
Avoids the need to create a copy of the std::string instance
(potentially allocating).
The only reason RegisterService takes its argument by value is because
it's std::moved internally.
Keeps the CPU-specific behavior from being spread throughout the main
System class. This will also act as the home to contain member functions
that perform operations on all cores. The reason for this being that the
following pattern is sort of prevalent throughout sections of the
codebase:
If clearing the instruction cache for all 4 cores is necessary:
Core::System::GetInstance().ArmInterface(0).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(1).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(2).ClearInstructionCache();
Core::System::GetInstance().ArmInterface(3).ClearInstructionCache();
This is kind of... well, silly to copy around whenever it's needed.
especially when it can be reduced down to a single line.
This change also puts the basics in place to begin "ungrafting" all of the
forwarding member functions from the System class that are used to
access CPU state or invoke CPU-specific behavior. As such, this change
itself makes no changes to the direct external interface of System. This
will be covered by another changeset.
The interface for shared memory was changed, but another commit was
merged that relied on the (previously public) internals of SharedMemory.
This amends that discrepancy.
The decision was made to name them LayeredExeFS instead of just LayeredFS to differentiate from normal RomFS-based mods. The name may be long/unweildy, but conveys the meaning well.
This will scan the <mod>/exefs dir for all files and then layer those on top of the game's exefs and use this as the new exefs. This allows for overriding of the compressed NSOs or adding new files. This does use the same dir as IPS/IPSwitch patch, but since the loader will not look for those they are ignored.
<random> isn't necesary directly within the header and can be placed in
the cpp file where its needed. Avoids propagating random generation
utilities via a header file.
Cleans out the citra/3DS-specific implementation details that don't
apply to the Switch. Sets the stage for implementing ResourceLimit
instances properly.
While we're at it, remove the erroneous checks within CreateThread() and
SetThreadPriority(). While these are indeed checked in some capacity,
they are not checked via a ResourceLimit instance.
In the process of moving out Citra-specifics, this also replaces the
system ResourceLimit instance's values with ones from the Switch.
This service function was likely intended to be a way to redirect where
the output of a log went. e.g. Firing a log over a network, dumping over
a tunneling session, etc.
Given we always want to see the log and not change its output. It's one
of the lucky service functions where the easiest implementation is to
just do nothing at all and return success.
Both member functions assume the passed in target process will not be
null. Instead of making this assumption implicit, we can change the
functions to be references and enforce this at the type-system level.
Makes the interface nicer to use in terms of 64-bit code, as it makes it
less likely for one to get truncation warnings (and also makes sense in
the context of the rest of the interface where 64-bit types are used for
sizes and offsets
The separate enum isn't particularly necessary here, and the values can
just be directly put into the ResultCode instances, given the names are
also self-documenting here.
Used by developers to test games, not present on retail systems. Some games are known to respond to DebugPad input though, for example Kirby Star Allies.
Default implementation will return "yuzu" for any string. GUI clients (or CLI) can implement the Frontend::SoftwareKeyboardApplet class and register an instance to provide functionality.
Similar to PR 1706, which cleans up the error codes for the filesystem
code, but done for the kernel error codes. This removes the ErrCodes
namespace and specifies the errors directly. This also fixes up any
straggling lines of code that weren't using the named error codes where
applicable.
It seems palma is done through bluetooth, we need this for pokemon go however more research needs to be done when we actually get palma working. This is presumably used for transfering data between the controller and the console, it does not seem for actual input as far as I know.
There's no real point to keeping the separate enum around, especially
given the name of the error code itself is supposed to document what the
value actually represents.
empty() in this case will always return false, since the returned
container is a std::array. Instead, check if all given users are invalid
before returning the error code.
The previous expression would copy sizeof(size_t) amount of bytes (8 on
a 64-bit platform) rather than the full 10 bytes comprising the uuid
member.
Given the source and destination types are the same, we can just use an
assignment here instead.
When yuzu is compiled in release mode this function is unused, however,
when compiled in debug mode, it's used within a LOG_TRACE statement.
This prevents erroneous compilation warnings about an unused function
(that isn't actually totally unused).
* svcBreak now dumps information from the debug buffer passed
info1 and info2 seem to somtimes hold an address to a buffer, this is usually 4 bytes or the size of the int and contains an error code. There's other circumstances where it can be something different so we hexdump these to examine them at a later date.
* Addressed comments
Started implementation of the AM message queue mainly used in state getters. Added the ability to switch docked mode whilst in game without stopping emulation. Also removed some things which shouldn't be labelled as stubs as they're implemented correctly
These are needed by Edizon to boot. They are used to see if a user is using SX OS, as SX OS registers a custom service called 'tx' and attempting to register a service of the same name lets the application know if it is present.
Allows resuing a common KeyManager when a large amount of NCAs are handled by the same class. Should the parameter not be provided, a new KeyManager will be constructed, as was the default behavior prior to this.
Previously, we would let a user enter an unbounded name and then
silently truncate away characters that went over the 32-character limit.
This is kind of bad from the UX point of view, because we're essentially
not doing what the user intended in certain scenarios.
Instead, we clamp it to 32 characters and make that visually apparent in
the dialog box to provide a name for a user.
* get rid of boost::optional
* Remove optional references
* Use std::reference_wrapper for optional references
* Fix clang format
* Fix clang format part 2
* Adressed feedback
* Fix clang format and MacOS build
Returns the raw NACP bytes and the raw icon bytes into a title-provided buffer. Pulls from Registration Cache for control data, returning all zeros should it not exist.
When enabled in settings, PatchNSO will dump the unmodified NSO that it was passed to a file named <build id>.nso in the dump root for the current title ID.
Also adds UI option in Debug > Dump section, with the idea later things to be dumped (i.e. other game data or textures, etc) will use the same group box.
An object to read SaveDataInfo objects, which describe a unique save on the system. This implementation iterates through all the directories in the save data space and uses the paths to reconstruct the metadata.
Many of the Current<Thing> getters (as well as a few others) were
missing const qualified variants, which makes it a pain to retrieve
certain things from const qualified references to System.
This is just flat data, so it doesn't really need to be in the function
itself. This also allows deduplicating the constant for the backup size
in GetImageSize().
Now that we've gotten the innaccurate error codes out of the way, we can
finally toss away a bunch of these, trimming down the error codes to
ones that are actually used and knocking out two TODO comments.
All priority checks are supposed to occur before checking the validity
of the thread handle, we're also not supposed to return
ERR_NOT_AUTHORIZED here.
We can just call the function instead of duplicating the code here. This
also prevents an unused function warning.
We also don't need to take the lambda capture by reference. It's just a
u64 value, so by value is fine here.
* Fixed conflict with nfp
* Few fixups for nfc
* Conflict 2
* Fixed AttachAvailabilityChangeEvent
* Conflict 3
* Fixed byte padding
* Refactored amiibo to not reside in "System"
* Removed remaining references of nfc from system
* used enum for Nfc GetStateOld
* Added missing newline
* Moved file operations to front end
* Conflict 4
* Amiibos now use structs and added mutexes
* Removed amiibo_path
In the kernel, there isn't a singular handle table that everything gets
tossed into or used, rather, each process gets its own handle table that
it uses. This currently isn't an issue for us, since we only execute one
process at the moment, but we may as well get this out of the way so
it's not a headache later on.
This should be comparing against the queried process' vma_map, not the
current process'. The only reason this hasn't become an issue yet is we
currently only handle one process being active at any time.
This is a subset of the better-hid-2 changes, this fixes input in various games which don't support dual joycons. This pr will search for the next best controller which is supported by the current game
This event signals the game when new DLC is purchased from the eShop while the game is running. Since, for the forseeable future, yuzu will not have this ability, it seems safe to stub with a dummy event that will never fire. This is needed to boot Sonic Mania Plus (update v1.04).
When writing VFS, it initally seemed useful to include a function to in-place convert container files into directories in one homogenous directory structure, but re-evaluating it now there have been plenty of chances to use it and there has always been a better way. Removing as it is unused and likely will not be used.
Now that the changes clarifying the address spaces has been merged, we
can wrap the checks that the kernel performs when mapping shared memory
(and other forms of memory) into its own helper function and then use
those within MapSharedMemory and UnmapSharedMemory to complete the
sanitizing checks that are supposed to be done.
swap.h only needs to be present in the header for the type aliases and
definitions, it's not actually needed in the cpp files though. input.h
is just unused entirely in xpad.h
These classes are non-trivial and are definitely going to be changed in
the future, so we default these to prevent issues with forward
declarations, and to keep the compiler from inlining tear-down code.
The constructor alone is pretty large, the reading code should be split
into its consistuent parts to make it easier to understand it without
having to build a mental model of a 300+ line function.
The only reason the getter existed was to check whether or not the
program NCA was null. Instead, we can just provide a function to query
for the existence of it, instead of exposing it entirely.
The data retrieved in these cases are ultimately chiefly owned by either
the RegisteredCache instance itself, or the filesystem factories. Both
these should live throughout the use of their contained data. If they
don't, it should be considered an interface/design issue, and using
shared_ptr instances here would mask that, as the data would always be
prolonged after the main owner's lifetime ended.
This makes the lifetime of the data explicit and makes it harder to
accidentally create cyclic references. It also makes the interface
slightly more flexible than the previous API, as a shared_ptr can be
created from a unique_ptr, but not the other way around, so this allows
for that use-case if it ever becomes necessary in some form.
There's no need for shared ownership here, as the only owning class
instance of those Cpu instances is the System class itself. We can also
make the thread_to_cpu map use regular pointers instead of shared_ptrs,
given that the Cpu instances will always outlive the cases where they're
used with that map.
Like the barrier, this is owned entirely by the System and will always
outlive the encompassing state, so shared ownership semantics aren't
necessary here.
This will always outlive the Cpu instances, since it's destroyed after
we destroy the Cpu instances on shutdown, so there's no need for shared
ownership semantics here.
This function doesn't need to care about ownership semantics, so we can
just pass it a reference to the file itself, rather than a
std::shared_ptr alias.
So, one thing that's puzzled me is why the kernel seemed to *not* use
the direct code address ranges in some cases for some service functions.
For example, in svcMapMemory, the full address space width is compared
against for validity, but for svcMapSharedMemory, it compares against
0xFFE00000, 0xFF8000000, and 0x7FF8000000 as upper bounds, and uses
either 0x200000 or 0x8000000 as the lower-bounds as the beginning of the
compared range. Coincidentally, these exact same values are also used in
svcGetInfo, and also when initializing the user address space, so this
is actually retrieving the ASLR extents, not the extents of the address
space in general.
This should help diagnose crashes easier and prevent many users thinking that a game is still running when in fact it's just an audio thread still running(this is typically not killed when svcBreak is hit since the game expects us to do this)
A fairly basic service function, which only appears to currently support
retrieving the process state. This also alters the ProcessStatus enum to
contain all of the values that a kernel process seems to be able of
reporting with regards to state.
Neither of these functions alter the ownership of the provided pointer,
so we can simply make the parameters a reference rather than a direct
shared pointer alias. This way we also disallow passing incorrect memory values like
nullptr.
We can just reserve the memory then perform successive insertions
instead of needing to use memcpy. This also avoids the need to zero out
the output vector's memory before performing the insertions.
We can also std::move the output std::vector into the destination so
that we don't need to make a completely new copy of the vector, getting
rid of an unnecessary allocation.
Additionally, we can use iterators to determine the beginning and end
ranges of the std::vector instances that comprise the output vector, as
the end of one range just becomes the beginning for the next successive
range, and since std::vector's iterator constructor copies data within
the range [begin, end), this is more straightforward and gets rid of the
need to have an offset variable that keeps getting incremented to
determine where to do the next std::memcpy.
Given it's only used in one spot and has a fairly generic name, we can
just specify it directly in the function call. This also the benefit of
automatically moving it.
Instead, we can make it part of the type and make named variables for
them, so they only require one definition (and if they ever change for
whatever reason, they only need to be changed in one spot).
Given the VirtualFile instance isn't stored into the class as a data
member, or written to, this can just be turned into a const reference,
as the constructor doesn't need to make a copy of it.
If the data is unconditionally being appended to the back of a
std::vector, we can just directly insert it there without the need to
insert all of the elements one-by-one with a std::back_inserter.
Given the filesystem should always be assumed to be volatile, we should
check and bail out if a seek operation isn't successful. This'll prevent
potentially writing/returning garbage data from the function in rare
cases.
This also allows removing a check to see if an offset is within the
bounds of a file before perfoming a seek operation. If a seek is
attempted beyond the end of a file, it will fail, so this essentially
combines two checks into one in one place.
Given the file is opened a few lines above and no operations are done,
other than check if the file is in a valid state, the read/write pointer
will always be at the beginning of the file.
These only exist to ferry data into a Process instance and end up going
out of scope quite early. Because of this, we can just make it a plain
struct for holding things and just std::move it into the relevant
function. There's no need to make this inherit from the kernel's Object
type.
Regular value initialization is adequate here for zeroing out data. It
also has the benefit of not invoking undefined behavior if a non-trivial
type is ever added to the struct for whatever reason.
Now that all external dependencies are hidden, we can remove
json-headers from the publically linked libraries, as the use of this
library is now completely hidden from external users of the web_service
library. We can also make the web_services library private as well,
considering it's not a requirement. If a library needs to link in
web_service, it should be done explicitly -- not via indirect linking.
This adds the missing address range checking that the service functions
do before attempting to map or unmap memory. Given that both service
functions perform the same set of checks in the same order, we can wrap
these into a function and just call it from both functions, which
deduplicates a little bit of code.
HandheldVariant is for specific games which expect handheld controllers to be at position 8(kirby), however this doesn't fix all games as some games require handhelds to be at position 0(snipperclips)
There's no real need to use a shared pointer in these cases, and only
makes object management more fragile in terms of how easy it would be to
introduce cycles. Instead, just do the simple thing of using a regular
pointer. Much of this is just a hold-over from citra anyways.
It also doesn't make sense from a behavioral point of view for a
process' thread to prolong the lifetime of the process itself (the
process is supposed to own the thread, not the other way around).
We don't need to potentially heap-allocate a std::string instance here,
given the data is known ahead of time. We can just place it within an
array and pass this to the mbedtls functions.
Neither of these functions require the use of shared ownership of the
returned pointer. This makes it more difficult to create reference
cycles with, and makes the interface more generic, as std::shared_ptr
instances can be created from a std::unique_ptr, but the vice-versa
isn't possible. This also alters relevant functions to take NCA
arguments by const reference rather than a const reference to a
std::shared_ptr. These functions don't alter the ownership of the memory
used by the NCA instance, so we can make the interface more generic by
not assuming anything about the type of smart pointer the NCA is
contained within and make it the caller's responsibility to ensure the
supplied NCA is valid.
We can just compare the existing std::vector instance with a constexpr
std::array containing the desired match. This is lighter resource-wise,
as we don't need to allocate on the heap.
Adds missing includes to prevent potential compilation issues in the
future. Also moves the definition of a struct into the cpp file, so that
some includes don't need to be introduced within the header.
When loading NROs, svcBreak is called to signal to the debugger that a new "module" is loaded. As no debugger is technically attached we shouldn't be killing the programs execution.
Hardware tests show that trying to unmap an unmapped buffer already should always succeed. Hardware test was tested up to 32 iterations of attempting to unmap
This was the result of a typo accidentally introduced in
e51d715700. This restores the previous
correct behavior.
The behavior with the reference was incorrect and would cause some games
to fail to boot.
Conceptually, it doesn't make sense for a thread to be able to persist
the lifetime of a scheduler. A scheduler should be taking care of the
threads; the threads should not be taking care of the scheduler.
If the threads outlive the scheduler (or we simply don't actually
terminate/shutdown the threads), then it should be considered a bug
that we need to fix.
Attributing this to balika011, as they opened #1317 to attempt to fix
this in a similar way, but my refactoring of the kernel code caused
quite a few conflicts.
Specifically bugs/crashes that arise when putting them in positions that are legal but not typical, such as midline, between patch data, or between patch records.
Many of the member variables of the thread class aren't even used
outside of the class itself, so there's no need to make those variables
public. This change follows in the steps of the previous changes that
made other kernel types' members private.
The main motivation behind this is that the Thread class will likely
change in the future as emulation becomes more accurate, and letting
random bits of the emulator access data members of the Thread class
directly makes it a pain to shuffle around and/or modify internals.
Having all data members public like this also makes it difficult to
reason about certain bits of behavior without first verifying what parts
of the core actually use them.
Everything being public also generally follows the tendency for changes
to be introduced in completely different translation units that would
otherwise be better introduced as an addition to the Thread class'
public interface.
GetName() returns a std::string by value, not by reference, so after the
std::string_view is constructed, it's not well defined to actually
execute any member functions of std::string_view that attempt to access
the data, as the std::string has already been destroyed. Instead, we can
just use a std::string and erase the last four characters.
When searching for a file extension, it's generally preferable to begin
the search at the end of the string rather than the beginning, as the
whole string isn't going to be walked just to check for something at the
end of it.
If an error occurs when constructing the PartitionFilesystem instance,
the constructor would be exited early, which wouldn't initialize the
extracted data member, making it possible for other code to perform an
uninitialized read by calling the public IsExtractedType() member
function. This prevents that.
Like the other two bits of factored out code, this can also be put
within its own function. We can also modify the code so that it accepts
a const reference to a std::vector of files, this way, we can
deduplicate the file retrieval.
Now the constructor for NSP isn't a combination of multiple behaviors in
one spot. It's nice and separate.
This too, is completely separate behavior from what is in the
constructor, so we can move this to its own isolated function to keep
everything self-contained.
If any of the error paths before the NCA retrieval are taken, it'll
result in program_nca_status being left in an inconsistent state. So we
initialize it by default with a value indicating an error.
In some games (Splatoon 2 and Splatoon 2 Splatfest World Premiere, notably), pass offset=0 and count=2047 into the ListAddOnContent method which should return all DLCs for the current title. The (presumably) intended behavior is to successfully return a empty array but because of a < v. <= in an if statement, a failure error code was returned causing these games to svcBreak. This fixes that if statement.
Now that we have all of the rearranging and proper structure sizes in
place, it's fairly trivial to implement svcGetThreadContext(). In the
64-bit case we can more or less just write out the context as is, minus
some minor value sanitizing. In the 32-bit case we'll need to clear out
the registers that wouldn't normally be accessible from a 32-bit
AArch32 exectuable (or process).
This will be necessary for the implementation of svcGetThreadContext(),
as the kernel checks whether or not the process that owns the thread
that has it context being retrieved is a 64-bit or 32-bit process.
If the process is 32-bit, then the upper 15 general-purpose registers
and upper 16 vector registers are cleared to zero (as AArch32 only has
15 GPRs and 16 128-bit vector registers. not 31 general-purpose
registers and 32 128-bit vector registers like AArch64).
Makes the public interface consistent in terms of how accesses are done
on a process object. It also makes it slightly nicer to reason about the
logic of the process class, as we don't want to expose everything to
external code.
Internally within the kernel, it also includes a member variable for the
floating-point status register, and TPIDR, so we should do the same here to match
it.
While we're at it, also fix up the size of the struct and add a static
assertion to ensure it always stays the correct size.
A process should never require being reference counted in this
situation. If the handle to a process is freed before this function is
called, it's definitely a bug with our lifetime management, so we can
put the requirement in place for the API that the process must be a
valid instance.
boost::static_pointer_cast for boost::intrusive_ptr (what SharedPtr is),
takes its parameter by const reference. Given that, it means that this
std::move doesn't actually do anything other than obscure what the
function's actual behavior is, so we can remove this. To clarify, this
would only do something if the parameter was either taking its argument
by value, by non-const ref, or by rvalue-reference.
The std::vector instances are already initially allocated with all
entries having these values, there's no need to loop through and fill
them with it again when they aren't modified.
auto x = 0;
auto-deduces x to be an int. This is undesirable when working with
unsigned values. It also causes sign conversion warnings. Instead, we
can make it a proper unsigned value with the correct width that the
following expressions operate on.
Given these are only added to the class to allow those functions to
access the private constructor, it's a better approach to just make them
static functions in the interface, to make the dependency explicit.
This converts it into a regular constructor parameter. There's no need
to make this a template parameter on the class when it functions
perfectly well as a constructor argument.
This also reduces the amount of code bloat produced by the compiler, as
it doesn't need to generate the same code for multiple different
instantiations of the same class type, but with a different fill value.
The locations of these can actually vary depending on the address space
layout, so we shouldn't be using these when determining where to map
memory or be using them as offsets for calculations. This keeps all the
memory ranges flexible and malleable based off of the virtual memory
manager instance state.
Previously, these were reporting hardcoded values, but given the regions
can change depending on the requested address spaces, these need to
report the values that the memory manager contains.
Rather than hard-code the address range to be 36-bit, we can derive the
parameters from supplied NPDM metadata if the supplied exectuable
supports it. This is the bare minimum necessary for this to be possible.
The following commits will rework the memory code further to adjust to
this.
* Implemented fatal:u properly
fatal:u now is properly implemented with all the ipc cmds. Error reports/Crash reports are also now implemented for fatal:u. Crash reports save to yuzu/logs/crash_reports/
The register dump is currently known as sysmodules send all zeros. If there are any non zero values for the "registers" or the unknown values, let me know!
* Fatal:U fixups
* Made fatal:u execution break more clear
* Fatal fixups
* Stubbed IRS
Currently we have no ideal way of implementing IRS. For the time being we should have the functions stubbed until we come up with a way to emulate IRS properly.
* Added IRS to logging backend
* Forward declared shared memory for irs
Preserves the meaning/type-safetiness of the stream state instead of
making it an opaque u32. This makes it usable for other things outside
of the service HLE context.
Even though setting this value to 3 is more correct. We break more games than we fix due to missing implementations. We should keep this as 0 for the time being
The owning process of a thread is required to exist before the thread,
so we can enforce this API-wise by using a reference. We can also avoid
the reliance on the system instance by using that parameter to access
the page table that needs to be set.
Several classes have a lot of non-trivial members within them, or don't
but likely should have the destructor defaulted in the cpp file for
future-proofing/being more friendly to forward declarations.
Leaving the destructor unspecified allows the compiler to inline the
destruction code all over the place, which is generally undesirable from
a code bloat perspective.
This was used in two different translation units
(deconstructed_rom_directory and patch_manager). This means we'd be
pointlessly duplicating the whole array twice due to it being defined
within the header.
These variables aren't used, which still has an impact, as std::vector
cannot be optimized away by the compiler (it's constructor and
destructor are both non-trivial), so this was just wasting memory.
std::shared_ptr isn't strictly necessary here and is only ever used in
contexts where the object doesn't depend on being shared. This also
makes the interface more flexible, as it's possible to create a
std::shared_ptr from a std::unique_ptr (std::shared_ptr has a
constructor that accepts a std::unique_ptr), but not the other way
around.
An instance of the NAX apploader already has an existing NAX instance in
memory. Calling directly into IdentifyType() directly would re-parse the
whole file again into yet another NAX instance, only to toss it away
again.
This gets rid of unnecessary/redundant file parsing and allocations.
AsNCA() allocates an NCA instance every time it's called. In the current
manner it's used, it's quite inefficient as it's making a redundant
allocation.
We can just amend the order of the conditionals to make it easier to
just call it once.
* Reworked incorrect nifm stubs
Need confirmation on `CreateTemporaryNetworkProfile`, unsure which game uses it but according to reversing. It should return a uuid which we currently don't do.
Any 0 client id is considered an invalid client id.
GetRequestState 0 is considered invalid.
* Fixups for nifm
* Fix bug where default username value for yuzu_cmd create an userprofile with uninitialize data as username
* Fix format
* Apply code review changes
* Remove nullptr check
This can just be a regular function, getting rid of the need to also
explicitly undef the define at the end of the file. Given FuncReturn()
was already converted into a function, it's #undef can also be removed.
Previously the second half of the value being written would overwrite
the first half. Thankfully this wasn't a bug that was being encountered,
as the function is currently unused.
This modifies the CPU interface to more accurately match an
AArch64-supporting CPU as opposed to an ARM11 one. Two of the methods
don't even make sense to keep around for this interface, as Adv Simd is
used, rather than the VFP in the primary execution state. This is
essentially a modernization change that should have occurred from the
get-go.
The kernel does the equivalent of the following check before proceeding:
if (address + 0x8000000000 < 0x7FFFE00000) {
return ERR_INVALID_MEMORY_STATE;
}
which is essentially what our IsKernelVirtualAddress() function does. So
we should also be checking for this.
The kernel also checks if the given input addresses are 4-byte aligned,
however our Mutex::TryAcquire() and Mutex::Release() functions already
handle this, so we don't need to add code for this case.
Courtesy of @ogniK5377.
This also moves them into the cpp file and limits the visibility to
where they're directly used. It also gets rid of unused or duplicate
error codes.
The kernel caps the size limit of shared memory to 8589930496 bytes (or
(1GB - 512 bytes) * 8), so approximately 8GB, where every GB has a 512
byte sector taken off of it.
It also ensures the shared memory is created with either read or
read/write permissions for both permission types passed in, allowing the
remote permissions to also be set as "don't care".
Part of the checking done by the kernel is to check if the given
address and size are 4KB aligned, as well as checking if the size isn't
zero. It also only allows mapping shared memory as readable or
read/write, but nothing else, and so we shouldn't allow mapping as
anything else either.
Previously, these were sitting outside of the Kernel namespace, which
doesn't really make sense, given they're related to the Thread class
which is within the Kernel namespace.
There were a few places where nested namespace specifiers weren't being
used where they could be within the service code. This amends that to
make the namespacing a tiny bit more compact.
While unlikely, it does avoid constructing a std::string and
unnecessarily calling into the memory code if a game or executable
decides to be really silly about their logging.